Please use this identifier to cite or link to this item: http://www.repositorio.cdtn.br:8080/jspui/handle/123456789/434
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Rose Mary Gomes do Prado-
dc.contributor.authorMoreira, J.M.L.-
dc.date.accessioned2016-08-29T18:47:19Z-
dc.date.available16-9-2010-
dc.date.available2016-08-29T18:47:19Z-
dc.date.issued2006-
dc.identifier.issnISSN 0306-4549-
dc.identifier.urihttp://www.repositorio.cdtn.br:8080/jspui/handle/123456789/434-
dc.description.abstractThis paper proposes a method, based on the artificial neural network technique, to predict accurately and in real time the power peak factor in a form that can be implemented in reactor protection systems. The neural network inputs are the position of control rods and signals of ex-core detectors. The data used to train the networks were obtained in the IPEN/MB-01 zero-power reactor from especially designed experiments.-
dc.language.isoInglês-
dc.rightsL-
dc.subjectReactor protection systems-
dc.subjectneural networks-
dc.subjectpower density-
dc.titleNeural network correlation for power peak factor estimation-
dc.typeArtigo Periódico-
dc.creator.affiliationCentro de Desenvolvimento da Tecnologia Nuclear/CDTN, Belo Horizonte, MG, Brasil-
dc.creator.affiliationCentro Tecnológico da Marinha em São Paulo/CTMSP, São Paulo, SP, Brasil-
dc.identifier.fasciculo7-
dc.identifier.vol33-
dc.identifier.extentp. 594-608-
dc.title.journalAnnals of Nuclear Energy Oxford-
Appears in Collections:Artigo de periódico

Files in This Item:
File Description SizeFormat 
Art-01_Rose_Mary_GPSouza.pdf536.69 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.