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ABSTRACT: The retrieval of the density function for the positron annihilation
lifetime spectrum is obtained from simulated data using the damped singular value
decomposition. Two filters factors were discussed, for noise and noiseless data, and
under the L curve criterion. The obtained density function is exact in the absence of
noise. When noise is considered, the predicted peaks are at positions �1 � 0.4167 ns�1,
�2 � 2.418 ns�1, whereas the exact results are �1 � 0.5250 ns�1 and �2 � 2.538 ns�1.
The computed areas for these peaks are also in fair agreement when compared with the
theoretical results. In this case, a filter factor that takes into account all the singular
values was found appropriate. The current study shows that the damped singular value
decomposition approach can be used to invert real laboratory data. © 2003 Wiley
Periodicals, Inc. Int J Quantum Chem 95: 97–102, 2003
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Introduction

T he counting of photons as a function of time,
from a positron annihilation process, can give

important information about the medium under
consideration. The positrons, usually from a 22Na

source, while traveling through the medium can
collide with the molecules, and several process can
occur [1]. The free positron can get solvated to later
on, annihilate to two photons (2 � �) at about 0.4
ns. It can also, with an electron, form the positro-
nium (Ps), either in its singlet state—the para-
Ps(p � Ps)—or the triplet state, ortho Ps(o � Ps).
The intrinsic annihilation of the p � Ps, in a 2 � �
process, happens at about 0.13 ns. This 2 � � pro-
cess can also occur with the triplet state at about 1 �
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5 ns, although the o � Ps must combine with an-
other electron (pick-off annihilation).

The inversion of the above positron annihilation
process, to obtain the positron lifetime spectrum
[2], can be represented as a Fredholm integral equa-
tion of first kind [3], which here will be represented
in the discret form Kf � c. The calculation of the
density function, f(�), � being the annihilation rate,
is represented by f and is especially important for
the experimentalist because it can give information
about the properties of the medium. In the above
representation, the matrix K represents the kernel
of the integral equation, K(t, �) � e��t and c, the
counting of positron annihilation, c(t).

The current inversion is considered an ill-posed
problem, that is, a problem that is defined when-
ever one of the three conditions—existence,
uniqueness, or continuity—is not fulfilled [4]. The
representation of the above kernel, together with
the experimental errors in the data, is sufficient to
classify this problem as ill-posed. Due to the char-
acter of the kernel, errors are largely amplified
when the inverse problem is to be solved.

Several methods are available to handle ill-posed
problems [4], the most common being the Tikhonov
regularization [5, 6]; the singular value decomposi-
tion [7], also known as the moving boundary sub-
spaces; and neural network [8]. These methods
have been applied to invert thermodynamic data [9,
10] and simulated positron annihilation lifetime
spectra [11] where no noises were taken into ac-
count. In the current work, the inversion of simu-
lated positron lifetime spectra, with and without
noise, is investigated using the moving boundary
subspaces method for two filter factors and under
the L curve criterion. The effect of noise in the
simulated data can be used as a preliminary study
to invert real laboratory data.

Theoretical Background

An essential step while calculating the probabil-
ity density function is to understand the subspace
structure of the data and the solution. The two
methods to be used for this purpose, the singular
value decomposition and the Tikhonov, have an
adjustable parameter to be determined on physical
grounds. In the singular value decomposition this
parameter is related to the dimension of the sub-
spaces and in this case the method is also called the
moving boundary subspace method. For the Tik-

honov regularization, it is related to a compromise
between residual and solution norms.

For a representation with n points and m data,
that is, K � Rm�n, f � Rn and c � Rm, the problem
can be considered as a linear transformation be-
tween the spaces Rn and Rm, which can be divided
into two subspaces. One of these subspaces is the
range of K, denoted by R(K). If f does not belong to
this subspace, the solution of the problem can be
only approximate. The uniqueness of the solution is
related to another subspace, the nullspace of K,
N(K). If this is a nonempty subspace, multiple so-
lutions of the problem appear, preventing tradi-
tional inversion matrix algorithm from being used
in the search for the solution of the problem. The
two remaining subspaces, also one each in Rn and
Rm, are analogous to the range and nullspace, de-
fined for the transposition of the kernel representa-
tion.

The factorization of K into U¥VT, U, and V being
orthonormal and ¥ diagonal matrices is the basic
step to establish the four subspaces. Under this
factorization [12], the density function can be writ-
ten as

fS � �
j�1

k uj
T � c
�j

vj (1)

where uj and vj are the vectors column of U and V,
and �j are the diagonal elements of ¥. The numer-
ical calculation of the factorization plus the deter-
mination of the optimal value of k, the rank of the
transformation, constitute the steps necessary to
determine the solution of the problem.

Positron Annihilation Lifetime
Spectra Model

The model system to study the inversion of
positronium annihilation data is the same as that
used before to invert data using neural network
and given in Refs. [11] and [13].

The density function, from which the inversion is
to be tested, was found in the form,

f��� � a1e��1�ln�����1�2
� a2e��2�ln�����2�2. (2)

The constants ai, �i, �i, (i � 1, 2), were chosen to
reproduce the positron annihilation data of lyso-
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zome in water [13]. The constants are [11]: a1 �
0.42250, a2 � 1.57270, �1 � 11.6951, �2 � 12.0688,
�1 � �0.57710, and �2 � 0.93530. From this density
function the direct problem, that is, c � Kf, was
established. This is used, as a reference, to under-
stand the results from the moving boundary
method. The theoretical results, c and K, are pre-
sented with this work, but four quantities are im-
portant for its characterization: the position, �, and
areas, A, of the peaks in the density function. The
first peak in Eq. (2) happens at �1 � 0.5250 ns�1

with A1 � 5.684% and may be attributed to the o �
Ps annihilation. The second peak, due to the free
positron and p � Ps annihilations, has �2 � 2.538
ns�1 and A2 � 94.32%. These four quantities are
used when comparing the inverted results using
the moving boundary method.

Density Function with Noiseless Data

The dimension of the spaces in which the data
are to be represented is the first step in carrying out
the inversion procedure. For m � 30, a residual
error �Kf � c�2

2 � 7.884 � 10�4 was found, implying
this basis set dimension represents adequately the
data. Nevertheless, in this case, dim N(K) � 13,
characterizing the multiple solution of the problem.
In fact, because the nullspace is nonempty, any
solution can be written as a linear combination of a

solution belonging to the range and a solution be-
longing to the nullspace.

The density function was calculated for increas-
ing dimensions of the range subspace. As k is in-
creased, the residual error of the computed solution
decreases. For k � rank(K) unphysical results are
obtained for the computed solution. The computed
density function, for k � rank(K) � 17, is presented
in Figure 1. An excellent agreement with the ex-
pected results is obtained. For example, the left and
right theoretical maximum occurs at 0.5250 ns�1

and 2.538 ns�1, respectively. The singular value
decomposition gives for these peaks 0.5833 ns�1

and 2.583 ns�1. The area under each peak is also in
excellent agreement. The first and second theoreti-
cal areas are 5.684% and 94.32%, whereas the com-
puted values are 5.684% and 94.32%.

Retrieving the Density Function in the
Presence of Noise Data

The above excellent results are not meant to im-
ply that the method can be applied to experimental
data. In this case, there is experimental noise that
must be taken into consideration. To test the stabil-
ity of the method in the presence of noise, a back-
ground noise, which follows the Poisson distribu-
tion, was added to the simulated counting.

The moving boundary subspaces method is very
sensitive to errors introduced in the data. This is

FIGURE 1. Inverted density function for the filter (4) and
noiseless data. The solid line represents exact results,
whereas the asterisks (*) represents computed results.

FIGURE 2. Calculated f(�) for noise data. The solid
line represents exact results, whereas the asterisks (*)
represent computed results.
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clear when the exact counting is substituted by the
noise data, c � �c, in the singular value decompo-
sition solution. The change in the solution, �fS �
fS,noise � fS, is given by

�fS � �
j�1

k uj
T � �c
�j

vj. (3)

Because the singular values go smoothly to zero,
any small change in the data can make the solution
diverge. The size of the four basic subspaces have to
be redefined in the presence of noise.

The combination of the oscillating character of
the basis set defined by the decomposition and the
addition of noise makes the solution have nonphys-
ical results, that is, the f(�) can assume, for some
values of half-life, negative values. Consequently,
additional restriction must be imposed on the prob-
lem. The restriction, f(�) � f(�) if f(�) � 0 and f(�) �
0 elsewhere, also used in inversion problems in
imaging [14] is then introduced into the solution
from Eq. (1). The new result is shown in Figure 2.
The simulated results for the half-life and areas are:
�1 � 0.2500 ns�1, �2 � 2.583 ns�1, A1 � 6.150%, and
A2 � 93.85%. Although the areas and the position of
second peak are in good agreement with expected

results, there is also a possibility of changing the
filter factor in the moving boundary method.

When defining the sizes of subspaces in previous
results, the filter factor used was

g�i� � �1 i 	 k
0 i 
 k, (4)

because the expansion (1) is truncated after some
optimal value. This filter factor has the inconve-
nience of eliminating any contribution after some
value of k while retrieving the density function.
Instead, when a smooth filter factor is used, these
neglected terms may be taken into consideration.
For a restriction not only on the residual norm but
also on the norm of the solution, that is, the filter for
the Tikhonov regularization, one can write,

g�i� �
�i

2

�i
2 � �

. (5)

The parameter � controls the importance of the resid-
ual and solution norms and has to be calculated. An
appropriate way for its determination is to use the
empirical L curve [4, 15]. These two norms were cal-
culated for various values of this free parameter, the
optimal value, �* was calculated as a value close to

FIGURE 3. Optimal determination of � using the L curve.
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the corner of this “L-shaped” curve, as represented in
Figure 3. This point has an important meaning: it is
the point at which both, residual and solution norms,
are appropriately weighted.

The optimal value of � was determined, giving
�* � 9.6207 � 10�6. This also establishes the filter
factor (5), which is represented in Figure 4. The
smooth character of this filter is clear from this
figure. The inverted density function, with this new
filter factor, is presented in Figure 5. The results for
the peaks position and areas are: �1 � 0.4167 ns�1,
�2 � 2.418 ns�1, A1 � 7.078%, and A2 � 92.92%,
clearly showing overall improvement in the com-
puted solution.

Conclusion

Density function calculation, in the positron an-
nihilation process, was carried out by the moving
boundary subspace method. For simulated data, in
absence of noise, the recovering of this quantity was
almost exact. The results are of comparable accu-
racy to those obtained by neural network [11].

Nevertheless, the above situation does not rep-
resent a real situation, and noise was included to
simulate experimental data. In the presence of
noise, the boundary of the subspaces have to be
redefined as a consequence of error amplification.
The first strategy adopted was to impose the con-
dition f(�) � 0, after a solution had been found. In
the second alternative used, one seeks not only the

residual norm but also the solution norm. The extra
parameter introduced in this case was determined
by the L curve criterion.

Useful information about the structure of the
density function can be obtained by the moving
boundary subspace method. The positions and ar-
eas were recovered with tolerable accuracy, al-
though the restriction on the solution appears to be
better than L curve criterion, a conclusion similar to
one found previously [15]. The current approach
indicates an alternative way to handle experimental
data in the positron annihilation process.

ACKNOWLEDGMENTS

This work was supported by CNPq and
FAPEMIG.

References

1. Mogensen, O. E. Positron Annihilation in Chemistry;
Springer Verlag: Heidelberg, 1995.

2. Schrader, D. M.; Jean, Y. C. Positron and Positronium Chem-
istry Studies in Theoretical Chemistry; Elsevier: Oxford,
1988.

3. Courant, R.; Hilbert, D. Methods of Mathematical Physics;
John Wiley, New York, 1989.

4. Hansen, P. C. Rank-Deficient and Discret Ill-Posed Problem,
SIAM, Philadelphia, 1998.FIGURE 4. Filter factor (5) for the optimal value of �.

FIGURE 5. Inverted density function for the filter
g(i) � �i

2/(�i
2 � �) and noise data. The solid line rep-

resents exact results, whereas the asterisks (*) repre-
sent computed results.

POSITRON ANNIHILATION LIFETIME SPECTRA

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 101



5. Tikhonov, A. N.; Arsénine, V. Méthods de Résolution de
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