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Abstract

In this work, iron oxide in the red mud (RM) waste was restructured to produce mesopores with surface [FeO,(OH), ] sites for the
efficient complexation/adsorption of (3-lactam antibiotics. Red mud composed mainly by hematite was restructured by an acid/
base process followed by a thermal treatment at 150-450 °C (MRM150, MRM200, MRM300, and MRM450) and fully
characterized by Mossbauer, XRD, FTIR, BET, SEM, CHN, and thermogravimetric analyses. The characterization data showed
a highly dispersed Fe’* oxyhydroxy phase, which was thermally dehydrated to a mesoporous «-Fe,05 with surface areas in the
range of 141206 m* g~'. These materials showed high efficiencies (21-29 mg g ') for the adsorption of 3-lactam antibiotics,
amoxicillin, cephalexin, and ceftriaxone, and the data was better fitted by the Langmuir model isotherm (R2 =0.9993) with
monolayer adsorption capacity of ca. 39 mg g ' for amoxicillin. Experiments such as competitive adsorption in the presence of
phosphate and H,O, decomposition suggested that the (3-lactamic antibiotics might be interacting with surface [FeO,(OH),]
species by a complexation process. Moreover, the OH/Fe ratio, BET surface area and porosity indicated that this complexation is

occurring especially on [FeO,(OH), Js¢ sites contained in the mesopore space.
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Introduction

Red mud (RM) is a hazardous alkaline waste from the Bayer
process with an estimated production of ca. 70 billion t year '
containing different metal oxides, e.g., Si, Al, Fe, and Ti
(Sutar et al. 2014). The high concentration of iron oxides in
RM (ca. 30-50%) led to the investigation of different techno-
logical applications of this waste, such as coagulant (Ni et al.
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2015), bio-oil upgrade (Karimi et al. 2014, Karimi et al. 2012),
wastewater treatment by heterogeneous Fenton (Costa et al.
2010), a combined process to recover iron and produce fuel
from bio-oil waste fractions (Mendonga et al. 2016), produc-
tion of carbon nanotubes/nanofibers (Oliveira et al. 2010,
Oliveira et al. 2011, Teixeira et al. 2012), and storage and
transport of offshore gas as carbon (Teixeira et al. 2014).
The use of red mud as adsorbent has also been extensively
investigated due to its potential to remove different aquatic
pollutants such as metal ions, e.g., Ni(I) and As(V)
(Castaldi et al. 2010, Smiciklas et al. 2014); textile dyes
(Hajjaji et al. 2016, Tor and Cengeloglu 2006); phenolic com-
pounds (Tor et al. 2006, Tor et al. 2009); and phosphate (Ye
et al. 2015, Yue et al. 2010). Several treatments have been
suggested in literature to increase the adsorption properties
in red mud, like acid treatment, e.g., HCI, H,SO,, and
HNO;, for the adsorption of fluoride and heavy metals
(Apak et al. 1998, Liang et al. 2014, Santona et al. 2006); heat
treatments to adsorb arsenic (Altundogan et al. 2002); and
mixing the red mud with calcium- and magnesium-ion solu-
tions for phosphate adsorption (Ye et al. 2016). Nevertheless,
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no study was found in literature about the creation of specific
sites based on Fe** for the adsorption of 3-lactamic antibiotic
molecules.

The presence of antibiotics in water may cause adverse
effects such as chronic toxicity inducing the resistance of path-
ogenic microorganisms (Ali et al. 2009, Dong et al. 2016,
Pezoti et al. 2016, Tian et al. 2016). Since conventional treat-
ments are not efficient to remove these hazardous contami-
nants from wastewaters, antibiotics have become a relevant
environmental issue (Liu et al. 2016b).

The class of (3-lactam is the most important group of anti-
biotics corresponding to 50-70% of total antibiotics con-
sumed in the world (Rahimi et al. 2015). There are several
proposed methods to remove (3-lactam antibiotics from waste-
waters, e.g., Fenton (Pourakbar et al. 2016), photocatalysis
(Weng et al. 2014), ozonolysis (Marcelino et al. 2017), elec-
trochemical oxidation (Liu et al. 2015b), reverse osmosis (Liu
et al. 2015a), and biodegradation (Dong et al. 2016).
Adsorptive methods have been extensively studied showing
good efficiencies and technical simplicity (Ali 2012, 2014, Ali
and Gupta 2007, Chayid and Ahmed 2015). Some of the ma-
terials used as adsorbents for antibiotic contaminants are acti-
vated carbons (Liu et al. 2016a, Pouretedal and Sadegh 2014),
clay (Saitoh and Shibayama 2016), molecularly imprinted
polymer (Yin et al. 2010), carbon nanotubes (Fazelirad et al.
2015), ion-exchange resin (Wang et al. 2017), and iron nano-
particles (Ghauch et al. 2009). A recent work showed that
supported iron oxide, i.e., Fe;03/Al,03, prepared in specific
conditions showed surprisingly high efficiencies for the ad-
sorption of {3-lactam antibiotics (Pinto et al. 2016). The ad-
sorption results were discussed in terms of FeO,(OH), surface
species capable of complexing the antibiotic molecules.

In this work, the surface of the iron oxide present in the RM
waste was chemically restructured in order to produce
mesopore spaces to allow diffusion of large [3-lactam antibi-
otic molecules and their adsorption by complexation on Fe**
surface sites.

Experimental
Synthesis of materials

RM (Alcan, Brazil) was extensively washed with distilled
water to a neutral pH and dried. The restructuring of iron
oxide(III) in the red mud (10 g) was carried out by a treatment
with HClgne. (120 mL, Vetec) 80-90 °C 1 h™" for a partial
dissolution followed by precipitation with NH,OH (Vetec)
added dropwise to reach pH 9. The obtained solid, named as
modified red mud (MRM), was treated at different tempera-
tures (150, 200, 300, and 450 °C) for 3 h in a tubular furnace
in air atmosphere producing four materials that have been
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named as MRM150, MRM200, MRM300, and MRM450,
respectively.

Characterization

The physicochemical properties of the adsorbents were char-
acterized by Maossbauer spectroscopy (°’Co source in a Rh
matrix using «-Fe as reference spectrum at room tempera-
ture), powder XRD (Shimadzu XRD-7000 Cu radiation),
SEM (FEI Quanta FEG 3D FEI microscope), infrared spec-
troscopy (PerkinElmer FTIR GX, KBr pellet), superficial-areca
BET (Quantachrome Autosorb-1 using N, at 77 K), thermo-
gravimetric (TG)/derivative thermogravimetric (DTG) (TG
DTG Shimatzu-60H performed in N, atmosphere, with a
heating rate of 10 °C min~' up to 700 °C), and elemental
analyses (PerkinElmer CHN-PE-2400).

Adsorption experiments

The adsorbents were tested (20 mg) for the adsorption of [3-
lactam antibiotics (20 mL, 100 ppm, pH ~ 5-6) at 25+2 °C.
The antibiotic removal was monitored by the maximum ab-
sorptions at 272, 260, and 262 nm on UV/Vis (Shimadzu UV-
2550), for amoxicillin (AMX), cephalexin (CEP), and ceftri-
axone (CEF), respectively. The adsorption isotherm was ob-
tained using 20 mg of MRM150 in contact with different
amoxicillin concentrations (25, 50, 75, 100, 150, 200, 250,
300, 350, and 400 mg L', pH ~ 5-6) during 24 h, and the
experimental data were adjusted using the Langmuir and
Freundlich isotherm models.

Competitive adsorption experiment was carried out using
MRM150 (20 mg) in contact with a solution (20 mL) contain-
ing phosphate (25 mg L") and amoxicillin (200 mg L™).

The H,0, decomposition experiments were carried out as
described previously (Pinto et al. 2016).

Results and discussion
Characterization

The chemical composition of the original RM used in this
work was ca. 49 wt% Fe (as Fe,03), 12 wt% Al (as Al,O3),
2 wt% TiO,, 1 wt% Ca (as Ca0), and silica. The RM sample
was treated with HCI and NH4OH followed by thermal treat-
ment at 150, 200, 300, and 400 °C.

The Mossbauer spectra (Fig. 1) showed for the original RM
precursor two iron phases, one related to hematite Fe,O;
(53%) and another to a highly dispersed/nanostructured phase
containing superparamagnetic Fe>* (47% spectral area).

The obtained results for the treated samples suggested that
the restructuring process strongly attacked the hematite phase
converting 100% to a superparamagnetic Fe**phase, even
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Fig. 1 Mossbauer spectra for RM before and after chemical restructuring
and thermal treatment at 150, 200, 300, and 450 °C

after thermal treatment at 150 and 200 °C, i.e., MRM,
MRM150, and MRM200. When the sample was treated at
higher temperatures, the superparamagnetic phase was gradu-
ally converted to hematite. At 300 and 450 °C, a well-
organized hematite phase is formed with 28 and 42% spectral
areas, respectively.

XRD analysis of the original RM (Fig. 2) indicated the pres-
ence of hematite (x-Fe,O3) with well-defined peaks at 33°, 36°,
63°, and 64° (PDF 33-664) which agreed with the Mossbauer
data. Moreover, the XRD data also indicated the presence of
alumina (Al,O3), titania (TiO,), and silica (SiO,) phases.

After chemical treatment, i.e., sample MRM, the hematite
peaks became less intense and broad suggesting a loss of
crystallinity. Upon treatment at 150 and 200 °C, no significant
change in the XRD profile was observed. On the other hand, a
significant crystallization took place in the treatment at 300
and 450 °C to form the «-Fe,O5 phase.

Crystallite average size of x-Fe,O3 estimated by the
Scherrer equation showed values of approximately 33 nm
for the original RM. When MRM was treated at 150, 200,
300, and 450 °C, the crystallite size varied from 10 nm for
the MRM 150 to 12, 13, and 15 nm, respectively.
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Fig. 2 XRD analyses for RM before and after chemical restructuring and
thermal treatment at 150, 200, 300, and 450 °C

It is interesting to consider that Mossbauer data suggested
that most of the Fe** phases are present as amorphous Fe
oxide and hydroxide, a highly dispersed phase which cannot
be observed by XRD.

The SEM images (Fig. 3) showed in general no significant
difference in the texture and morphology of RM and MRM
samples. However, upon treatment at 150 and 200 °C, SEM
images suggested the formation of some amorphous porous
structure (Fig. 3).

It is also interesting to observe by EDS mapping measure-
ments (see Electronic Supplementary Material—Fig. S1) that
the Fe is completely disperse throughout the RM sample.
After the restructuring process, no significant difference was
observed in the Fe distribution on the sample surfaces.

The infrared spectrum of RM showed broad bands
assigned to O—H stretch vibrations from iron, aluminum, and
silica oxide/hydroxide and H-O-H adsorbed molecules, be-
tween 3550 and 3234 cm ™' (Fig. 4). It is interesting to observe
that the relative intensities of these O—H bands decrease with
respect to the related Si—O and Fe—O bands. The vibrations of
Si—O and Si—O-Si bonds were observed at 3334, 1115, 994,
and 617 cm ' (Miller and Wilkins 1952). After chemical and
thermal treatments, the disappearance of the band at 994 cm ™!
indicated a partial dissolution of Si-O species (Liang et al.
2014). A typical Fe,O3 band at 472 cm ' was observed in
infrared spectrum for all samples (Cornell and Schwertmann
2004).

BET analysis showed a surface area of 38 m? g ' for the
RM and no significant pore volume (Fig. 5). The surface
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Fig. 3 SEM images of RM,
MRM, MRM150, MRM200,
MRM300, and MRM450

4 um

MRM300 MRM450

Porous Porous

structure \ structure

restructuring with subsequent thermal treatment at 150 °C The thermal treatment at 200 °C (MRM200) produced a
(MRM150) increased the surface area to ca. 200 m> g '.  slight increase in the surface area to 206 m” g ', due to the
This increase can be related to the partial dissolution and con-  porosity created by water loss of Fe(OH);/FeOOH phase in
version of the hematite phase especially into meso- and  the sample. As the temperature was increased to 300 and
macroporous Fe(OH)3;/FeOOH phases. 450 °C, a decrease on the BET surface to 174 and 141 m?* g
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Fig. 4 IR spectra for the RM before and after chemical restructuring and
thermal treatment at 150, 200, 300, and 450 °C
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for MRM300 and MRM450, respectively, was observed, prob-
ably due to dehydration and sinterization process that typically
takes place with FeOOH phases (Zboril et al. 2002).
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Fig. 5 BET surface area and porosity for the RM before and after
chemical restructring and thermal treatment at 150, 200, 300, and 450 °C

TG analysis/DTA of the RM (Fig. 6) showed three
important endothermic losses. The first weight loss at
temperatures lower than 100 °C is related to adsorbed
water. The second loss centered at 260 °C is likely related
to the dehydroxylation of Fe-OH species, such as FeOOH
(Liu et al. 2016¢). At higher temperature, 330 °C, the
weight loss is probably related to the dihydroxylation of
Al-OH and Si-OH species (Liu et al. 2016c¢, Pascual et al.
2009).

It is interesting to observe that as the thermal treatment
increased, the two weight losses due to dehydroxylation at
260 and 330 °C gradually decreased. TG/DTA analysis of
the sample MRM200 showed that the loss at 260 °C
completely disappeared suggesting that treatment at 200 °C
converted all Fe-OH species onto Fe,05. Also, the evaluation
of the MRM300 and MRM450 thermograms indicated that
these treatments led to the complete dehydroxylation of the
Al and Si hydroxyl species.

The hydrogen contents were obtained by elemental
analysis, i.e., 0.72, 1.83, 1.34, 1.23, 0.88, and 0.25 wt%,
for the samples RM, MRM, MRM150, MRM200,
MRM300, and MRM450, respectively. Considering the
TG weight losses and H percentage, it was possible to
estimate the FeO,(OH), composition for all the samples.
The MRM showed the approximate composition of
FeO, 33(0OH)y »5 which after thermal treatment at 150 °C
(MRM150) turned to a composition of ca.
FeO, 4:(OH)( 19. After 200 and 300 °C thermal treat-
ments, similar compositions were obtained, i.e.,
FeOl_46(OH)0.07 and F301.47(OH)0406, respectively. At
450 °C, the OH content further decreased to an estimated
composition of FeO; 49(OH)g g, which is very close to the
composition Fe,O3. These results clearly indicate a con-
tinuous dehydroxylation process during the conversion of
the Fe oxyhydroxy phase to the oxide Fe,Os5.

MRM150

DTG/ a.u.

: Dehydroxylation 1 :
Fe-OH \' 1 , ,
!
_____ '\ ) ! | v | Dehydroxylation
Dehydration =--- === ALOHand S-OH
T T T T T T T T
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Fig. 6 DTG analyses of the samples treated at different temperatures
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Fig. 7 Amoxicillin, cephalexin 60
and ceftriaxone adsorption on
RM and MRM treated at different
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The adsorption capacities for the prepared materials were ob-
tained for three different 3-lactam antibiotic adsorption
(amoxicillin, cephalexin, and ceftriaxone), and the results are
shown in Fig. 7.

The RM showed no significant antibiotic adsorption for all
[3-lactam antibiotics. After restructuring and thermal treatment
at 150 °C, the MRM 150 sample adsorbed significant amounts
of the antibiotics, ca. 22, 29, and 21 mg g7l of amoxicillin,
cephalexin, and ceftriaxone, respectively. As the thermal treat-
ment increased to 200 and 300 °C, a slight decrease on ad-
sorption was verified, reaching values of 21 and 16 mg g " for
amoxicillin, 28 and 25 mg g ' for cephalexin, and 20 and
16 mg g ' for ceftriaxone, respectively. On the other hand,
treatment at 450 °C led to a more significant decrease of the
adsorption capacity, i.e., 6, 16, and 9 mg gfl for amoxicillin,
cephalexin, and ceftriaxone, respectively. The MRM sample
was also tested in adsorption experiments, but atomic absorp-
tion measurements in the aqueous phase showed significant
Fe’* leaching from the material.

Based on the literature, classical isotherm models, such as
Langmuir and Fretindlich; statistical physics models such as
Hill (Sellaoui et al. 2017b); and phenomenological model
(Sellaoui et al. 2017a) have been used to better understand
the experimental data obtained from pharmaceutical adsorp-
tion. In this work, a preliminary modeling was carried out
using the classical models which have been used to fit a wide
range of experimental data (Fazelirad et al. 2015, Liu et al.
2016a, Moussavi et al. 2013).

Therefore, the better results were obtained for the Langmuir
model (R*=0.9993) compared to the Fretindlich model (R*=
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0.9360) (see Electronic Supplementary Material—Fig. S2).
The maximum monolayer adsorption capacity obtained from
the Langmuir model was 43 mg g ', which is close to the
experimental data, ca. 39 mg g '. More detailed experimental
data is necessary to investigate the use of more complex models
in order to understand the adsorption process.

To better understand the role of the iron species, a compet-
itive adsorption experiment was carried out in the presence of
phosphate. The obtained result showed that the AMX adsorp-
tion decreased from 41 to 7 mg AMX g ' in the presence of
25 mg phosphate L. Although the reason for this effect is not
clear, it is known that phosphates can complex surface Fe**
species and hinder the interaction with other species in aque-
ous medium (Pinto et al. 2016, Qin et al. 2014). Therefore, this
result suggested that the AMX adsorption might be related to a

¢’ *-AMX-specific interaction/complexation process.

The effect of AMX on the inhibition of the H,O, decom-
position process was also investigated, and the results are
shown in Fig. 8. It can be observed that the material
MRM150 is catalytically active to decompose hydrogen per-
oxide. This activity should be related to the interaction of
H,0O, molecules in the coordination sphere of surface Fe**
species (Pereira et al. 2012):

Fe** + H,0, — [Fe(OOH)** + H*.

[Fe(OOH)** — Fe*™ + OOH.

Fe’* + OOH — Fe** + 0, + H"

On the other hand, the H,O, decomposed in the presence of
the antibiotic and showed a strong decrease in peroxide de-
composition. This inhibition effect is likely related to the com-
plexation of AMX molecules on these surface Fe’* sites
which hindered the H,O, access to the metal coordination
sphere (Pinto et al. 2016).
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Fig.8 H,0, decomposition in the 7
absence ([AMX]=0) and
presence ([AMX] =200 mg L™
of AMX

x 10*/ mol L™ min™
T

decomposition

k

MRM150

In order to compare different adsorbents and the inter-
action of AMX with their surfaces, the adsorptions per
square meter were calculated based on the isotherms and
are compared in Fig. 9. The adsorbents MRM150,
MRM200, and MRM300 showed similar values of ca.
0.2 mg AMX m 2 whereas the sample MRM450 showed
a lower value, i.e., 0.1 mg AMX m 2, indicating that the
adsorption process is dependent not only on the surface
area but also on the nature of the adsorption sites. It is
also interesting to compare the normalized adsorption of
the MRM adsorbents with other carbon-based adsorbents
(Fig. 9) which have a greater surface area than the mod-
ified red muds, i.e., 1065 m* g7l for KAC (microwave-
prepared activated carbon (Chayid and Ahmed 2015)),
671 m*> g ' for MNPs_PAC (magnetic Fe;0,@C

0,35

0,30

0,25 4

ADSORBENT
o
N
o
1

2

€ 0,15
~ 0,10
(on

0,05

0,00 -

MRM150 Fe/Al203 KAC MNPs_PAC OP

Material

Fig. 9 Adsorption capacities (¢) in milligram per square meter of

different materials
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nanoparticles (Kakavandi et al. 2014)), 1055 m? g_1 for
OP (activated carbon modified by oxidation (Mansouri
et al. 2015)), 660 m> g_1 for TNC (templated nanoporous
carbon (Barrera et al. 2014)), and 935 m> gfl for AC
(commercial activated carbon (Barrera et al. 2014)).

It can be observed that the specific adsorption capacity of
MRM150 is comparable to the best materials in the literature.
Only a synthetic material also based on Fe** supported on
Al,O3 showed higher adsorption capacity (iron oxide support-
ed on alumina, 107 m? g_1 (Pinto et al. 2016)).

Figure 10 shows the adsorption capacities with the surface
area and OH/Fe mole ratios for the different MRM materials.

Bl q

[ Superficial Area
OH/Fe

=0,19
OH/Fe = 0,07
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OH/Fe

MRM300
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Material

Fig. 10 Amoxicillin adsorption, OH/Fe ratio, and surface area for the
different MRM-modified adsorbents
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Fig. 11 Schematic representation
of the restructuring of the Fe
oxide in RM to produce
mesopores for the adsorption/
complexation of amoxicillin

SiO,/ALO,/TiO,

It can be observed that the OH/Fe ratio for the MRM200
sample strongly decreased but the adsorption did not decrease
significantly suggesting in this case that the surface is more
important to determine the adsorption capacity. For the sample
MRM300, the small decrease on the surface area appears to be
responsible for the decrease observed on the AMX adsorption.
On the other hand, the strong decrease on the AMX adsorption
for the MRM450 sample seems to be more related to the
decrease in OH/Fe (Fig. 10).

Although more detailed experiments are necessary to under-
stand these data, one can consider that the treatment of red mud
led to an increase of the surface area and the creation of
mesopores containing Fe surface sites available for the complex-
ation of amoxicillin molecules. The mesopores are important for
the adsorption of the relatively large amoxicillin molecules
(16 Ax19 A x7 A) Boles et al. 1978). Also, on the surface
of the mesopores, the formation of FeO,(OH), sites containing
labile OH ligands seems to be important for the (3-lactam anti-
biotic adsorption by complexation (Pinto et al. 2016).

Based on these results, a simplified schematic representa-
tion of the AMX adsorption process on the restructured RM
material is shown in Fig. 11.

Conclusions

Red mud waste can be modified by simple acid/base and
thermal treatments to produce a mesoporous Fe oxide phase
containing surface FeO,(OH), sites efficiently for the adsorp-
tion of the hazardous [3-lactamic antibiotics. These results
demonstrate the possibility to modify different Fe-rich wastes
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to produce efficient adsorbents of (3-lactam antibiotics and
other large pharmaceutical hazardous molecules.
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