TRATAMENTO QUÍMICO DE REJEITOS LÍQUIDOS DE BAIXO NÍVEL DE RADIAÇÃO

Autor: Thiago Pavan Barcia Fonseca – e-mail: tpbf@urano.cdtn.br Orientador: Carlos Antônio de Morais – e-mail: cmorais@urano.cdtn.br

Universidade Federal de Minas Gerais - UFMG Centro de Desenvolvimento da Tecnologia Nuclear – CDTN/CNEN

RESUMO

Os rejeitos líquidos radioativos gerados no Centro de Desenvolvimento da Tecnologia Nuclear — CDTN/CNEN, possuem composições químicas e radiológicas variadas, produto das diversas atividades executadas nos setores geradores. O tratamento dos rejeitos líquidos aquosos consiste na precipitação química das espécies radioativas presentes na solução, filtragem do sobrenadante e cimentação da lama resultante. O tratamento tem como objetivos a descontaminação e neutralização do rejeito, obtenção de um volume mínimo de lama e o baixo custo operacional. O tratamento químico de rejeitos líquidos aquosos de baixo nível de radiação é parte integrante do projeto "Gerência de Rejeitos Radioativos" desenvolvido pelo Serviço de Tecnologia de Rejeitos do Centro.

1. INTRODUÇÃO [1]

No Centro de Desenvolvimento da Tecnologia Nuclear - CDTN/CNEN, situado no campus da Universidade Federal de Minas Gerais, são desenvolvidos projetos ligados ao ciclo do combustível nuclear e às diversas áreas de aplicação de radioisótopos. No desenvolvimento de suas atividades são gerados resíduos não aproveitáveis, denominados rejeitos radioativos, que a despeito de apresentarem baixos níveis de radiação requerem a adoção de uma série de medidas que evitem riscos inaceitáveis aos seres vivos e ao meio ambiente e reduzam os custos que possam advir desses rejeitos.

O Projeto "Gerência de Rejeitos Radioativos" abrange os trabalhos de rotina do gerenciamento de rejeitos radioativos no CDTN, como também a definição da metodologia a ser utilizada no tratamento químico dos rejeitos líquidos aquosos (soluções de natureza inorgânica) e dos parâmetros para cimentação de lamas e imobilização de rejeitos sólidos.

Os rejeitos líquidos gerados no CDTN apresentam composição química e radiológica bastante variada e são segregados, na origem, em rejeitos aquosos e orgânicos. Análises químicas e radioquímicas são realizadas para a caracterização desses rejeitos. Em função das características dos rejeitos, são realizados testes de bancada com o objetivo de se definir um processo de tratamento adequado visando a neutralização e descontaminação dos rejeitos através da precipitação química. A lama gerada é então separada e incorporada em cimento. O produto solidificado

deve apresentar características apropriadas garantindo a segurança no seu manuseio, transporte e armazenamento.

2. TRATAMENTO QUÍMICO DE REJEITOS LÍQUIDOS RADIOATIVOS - ESTUDO TEÓRICO [2,3,4]

Grande parte dos rejeitos radioativos líquidos gerados no CDTN apresentam urânio, tório, rádio e descendentes, como principais contaminantes. Estes elementos geralmente estão presentes em quatro tipos de matrizes distintas:

- solução ácida com alto teor de sulfato (SO₄-2) e de fosfato (PO₄-3) (meio fosfórico);
- solução ácida com baixo teor de sulfato e de fosfato;
- solução ácida sem sulfato;
- solução básica com alto teor de carbonato.

2.1 Solução ácida com alto teor de sulfato e/ou de fosfato

Este tipo de rejeito pode ser tratado através da adição de ácido oxálico, em quantidade definida experimentalmente, seguida de neutralização parcial (até pH \approx 4) com NaOH e adição de NaHCO₃ até pH \approx 6.5 – 7.0.

A neutralização direta com NaOH ou Ca(OH)₂ consumiria uma quantidade excessiva dos reagentes devido à grande acidez livre do rejeito. Além disso, este procedimento poderia ocasionar a cristalização de espécies, como Na₂SO₄.xH₂O, Na₃PO₄.yH₂O ou CaSO₄.wH₂O, Ca₃(PO₄)₂.zH₂O, aumentando significativamente o volume de precipitado.

No tratamento com $H_2C_2O_4$ (ácido oxálico), NaOH e NaHCO₃, o urânio pode ser precipitado na forma de uma mistura de fosfatos ($UO_2NH_4PO_4.3H_2O$, $UO_2NaPO_4.3H_2O$ e $UO_2HPO_4.4H_2O$), o tório como oxalato ($Th(C_2O_4)_2$), hidróxido ($Th(OH)_4$) ou fosfato ($Th(PO_4)_2$) e o rádio na forma de oxalato (RaC_2O_4), carbonato ($RaCO_3$) ou co-precipitado juntamente com urânio e tório.

O pH final do tratamento não deve ser superior a 7, devido à possível formação do íon tricarbonatouranilato (VI) e solubilização dos fosfatos formados.

2.2 Solução ácida com baixo teor de sulfato e de fosfato

Para este tipo de matriz, o tratamento mais indicado é a adição de cloreto de bário (BaCl₂) para co-precipitar o rádio na precipitação do sulfato de bário, seguido de neutralização com hidróxido de cálcio e NaOH.

A quantidade de BaCl₂ a ser adicionada deve ser definida experimentalmente.

2.3 Solução ácida sem sulfato

Para este tipo de rejeito deve-se adicionar uma determinada quantidade de íons sulfato, por exemplo na forma de ácido sulfúrico (H₂SO₄), e proceder como no tratamento descrito para soluções com baixo teor de sulfato e fosfato.

2.4 Solução básica com alto teor de carbonato

Soluções de carbonato, como carbonato de amônio, carbonato de sódio ou bicarbonato de amônio, são geralmente usadas na descontaminação de materiais e equipamentos de laboratório. Neste caso, deve-se acidificar a solução até pH menor que 1, para eliminar todo o carbonato existente.

Na ausência de íons sulfato no rejeito, a acidificação deve ser feita com ácido sulfúrico (H₂SO₄). Caso contrário utiliza-se ácido clorídrico (HCl) ou ácido nítrico (HNO₃).

Após acidificação, o procedimento deve ser o mesmo descrito para soluções com baixo teor de sulfato e fosfato.

3. TRATAMENTO QUÍMICO - ESTUDO PRÁTICO [5,6,7]

A eliminação de rejeitos líquidos na rede de esgotos sanitários só é permitida se forem obedecidos os limites de concentração de atividade listados na Norma CNEN-NE-6.05 – *Gerência de Rejeitos Radioativos em Instalações Radiativas*. A norma prevê limites de concentração de atividade para cada radioisótopo presente no rejeito. Não obstante, quando se trabalha com rejeitos contendo diversos radionuclídeos, o monitoramento da atividade de cada um deles durante o tratamento torna-se dispendiosa economicamente. A Norma prevê então que, se for desconhecida a identidade ou a concentração de qualquer radionuclídeo na mistura, o valor limite para a concentração de atividade total, visando a eliminação de rejeitos líquidos, deve ser de 1,5 x 10⁴ Bq/m³. Para a avaliação da efetividade dos testes de tratamento químico das amostras líquidas aquosas geradas no Centro de Desenvolvimento da Energia Nuclear, utilizou-se este limite.

A amostragem para os testes de tratamento químico é realizada tendo em vista as seguintes etapas: antes do recolhimento dos rejeitos, os setores geradores preenchem um formulário disponibilizando informações diversas sobre os rejeitos, incluindo sua composição química aproximada, volumes e radionuclídeos presentes; todos os dados constantes do formulário são inseridos no Banco de Dados de Rejeito, do Serviço de Tecnologia de Rejeitos; consultando-se este banco, lista-se o rejeito de interesse, dividindo-o em lotes de aproximadamente 200 litros observando-se os seus constituintes químicos, teor dos constituintes e a concentração de atividade total; compõe-se então uma amostra de cada lote para que sejam feitos a caracterização química e radioquímicas e os ensaios de laboratório.

Foram submetidas aos testes químicos amostras provenientes de composições de rejeitos aquosos gerados nos laboratórios do Serviço de Química e Mineralogia – IT2

(amostras AT2-5 e AT2-6) e do Serviço de Processos - CT5 (amostras CT5-1 e PRS-1) do Centro.

As características químicas e radiológicas das amostras em estudo estão dispostas nas tabelas 1 e 2.

Tabela 1: Análise de ²³⁸U, ²³²Th, ²²⁶Ra, ²²⁸Ra, SO₄-2, P₂O₅ e H⁺

AMOSTRA	²³⁸ U (g/L)	²³² Th (g/L)	²²⁶ Ra (g/L)	²²⁸ Ra (g/L)	SO ₄ -2 (g/L)	P ₂ O ₅ (g/L)	H ⁺ (g/L)
AT2-5	0,65	0,02	2,47 x 10 ⁻⁹	2,30 x 10 ⁻¹²	412	100	4,00
AT2-6	4,63	0,05	1,36 x 10 ⁻⁸	3,45 x 10 ⁻¹²	286	106	3,00
CT5-1	0,20	0,02	1,09 x 10 ⁻⁸	9,23 x 10 ⁻¹¹ 12,7		220	0,25
PRS-1	2,19	0,08	1,09 x 10 ⁻⁹	1,04 x 10 ⁻¹⁰	28,9	8,45	0,80

Método Analítico: ²³⁸U por Nêutrons Retardados; ²³²Th por Ativação Neutrônica;

²²⁶Ra e ²²⁸Ra por Espectrometria Gama,

SO₄⁻² e P₂O₅ por Espectrometria de Absorção Molecular;

H⁺ por potenciometria.

Tabela 2: Determinação de α_{TOTAL} e β_{TOTAL}

AMOSTRA	$\alpha (x 10^6 \text{ Bq/m}^3)$	β (x 10 ⁶ Bq/m ³)		
AT2-5	0,29 ± 0,04	4,1 ± 0,1		
AT2-6	2,4 ± 0,1	28,9 ± 0,3		
CT5-1	0,92 ±0,07	$4,89 \pm 0,05$		
PRS-1	2,1 ± 0,1	19,7 ± 0,2		

Método Analítico: Radiometria

Tendo como principal objetivo a descontaminação do rejeito, respeitando o limite fornecido pela Norma CNEN-NE-6.05, com volume mínimo de lama gerada e menor custo de operação, foram realizados testes preliminares tendo como base as características químicas e radiológicas das amostras, no sentido de se avaliar quais os reagentes e parâmetros de reação mais eficientes para o tratamento do rejeito.

Avaliando-se os resultados dos testes preliminares propôs-se uma sequência de testes exploratórios utilizando-se como reagentes o ácido oxálico (H₂C₂O₄), hidróxido de sódio (NaOH), cal (Ca(OH)₂) e o carbonato ácido de amônio (NH₄HCO₃). Na Figura 1 é apresentado o sistema utilizado para a realização dos testes químicos.

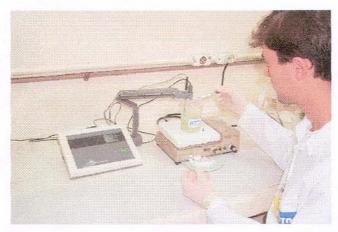


Figura 1: Sistema para tratamento químico [5]

Devido à alta salinidade do rejeito, as amostras para os testes foram preparadas pela diluição numa proporção de 1:1 com água destilada totalizando um volume de 200 mL.

Foram utilizados como materiais: béqueres de 300 mL, agitadores magnéticos, peagâmetros digitais, termômetro, balança analítica, espátulas, vidro de relógio, funil de vidro e papel de filtro.

Após a adição dos reagentes, cada amostra foi deixada sob agitação constante por aproximadamente 3 horas. O sistema de agitação foi então desligado e a amostra mantida em repouso, para a decantação da fase sólida e verificação da lama gerada, por aproximadamente 24 horas. O sobrenadante foi filtrado e encaminhado para determinação de α_{total} .

4. RESULTADOS E DISCUSSÃO

Na tabela 3 estão representados os testes químicos realizados nas amostras CT5-1, AT2-5, AT2-6 e PRS-1.

Tabela 3: Testes Químicos Realizados nas Amostras CT5-1, AT2-5, AT2-6 e PRS-1

Amostra	MASSA DE H ₂ C ₂ O ₄ ADICIONADO (g)	ADIÇÃO DE NaOH ATÉ O PH	ADIÇÃO DE CAL ATÉ O PH	ADIÇÃO DE NH₄HCO₃ ATÉ O PH	LAMA FORMADA (mL)	FRV	α _{TOTAL} (x 10 ⁶ Bq/m ³)	β _{TOTAL} (x 10 ⁶ Bq/m ³)
CT5-1/7	2,0	7,1	_	_	50	2	< LD	0,3 ± 0,2
AT2-5/7	2,0	7,1	_	_	25	4	2,3 ± 0,5	4 ± 1
AT2-6/7	2,0	7,2	_		< 10	> 10	2,8 ± 0,6	4 ± 1
PRS-1/7	2,0	7,1	_	_	100	1	1,0 ± 0,2	2,6 ± 0,8
CT5-1/6	2,0	3,6	9,5	_	50	2	0,006 ± 0,001	0,007 ± 0,003
AT2-5/6	2,0	3,7	7,1	7 = 2	75	1,3	0,019 ± 0,005	< 0,002
AT2-6/6	2,0	3,2	7,0		100	1	0,35 ± 0,08	0,19 ± 0,07
PRS-1/6	2,0	3,1	5,5	_	200	0,5	_	_
CT5-1/5	2,0	3,2	_	6,6	< 10	> 10	0,007 ± 0,001	0,004 ± 0,002
AT2-5/5	2,0	3,0	_	6,3	NV		0,16 ± 0,03	2,2 ± 0,9
AT2-6/5	2,0	3,5	_	6,5	< 10	> 10	0,4 ± 0,1	0,7 ± 0,2
PRS-1/5	2,0	3,6	_	6,5	75	1,3	0,32 ± 0,08	0,22 ± 0,08
CT5-1/8	1,0	4,3		6,8	< 10	> 10	0,040 ± 0,008	< 0,004
AT2-5/8	1,0	3,6	_	6,7	< 10	> 10	2,0 ± 0,5	1,0 ± 0,3
AT2-6/8	1,0	3,7		6,9	< 10	> 10	0,6 ± 0,2	0,3 ± 0,1
PRS-1/8	2,5	3,5		6,8	50	2	0,07 ± 0,01	0,11 ± 0,03

FRV = fator de redução de volume = volume de lama gerada / volume de rejeito tratado

Analisando-se os resultados obtidos nos testes, até o momento, verifica-se que apenas as amostras AT2-5 e CT5-1 foram descontaminadas, ambas pelo tratamento com NaOH e cal e, particularmente a amostra CT5-1, também pelo tratamento com NaOH e NH₄HCO₃.

< 10 = volume de lama visualizado inferior a 10 mL

NV = não visualizado - volume de lama muito reduzido ou ausente

Embora o limite para a eliminação do rejeito tenha sido atingido, o tratamento com NaOH e cal gera uma quantidade excessiva de lama o que inviabiliza o tratamento de grandes quantidades de rejeito.

5. CONSIDERAÇÕES FINAIS

A fim de se obter melhores resultados por processos que gerem menores volumes de lama, os testes exploratórios prosseguem com o estudo da variação de alguns parâmetros, como por exemplo o pH final de tratamento.

Após a otimização dos testes em escala de laboratório, pretende-se realizar o tratamento dos rejeitos aquosos em escala real, em bateladas de 200 litros e a cimentação da lama gerada, utilizando-se o sistema montado nas instalações do laboratório de tratamento químico. O sistema para tratamento químico em escala real é apresentado na Figura 2.

Figura 2: Sistema para tratamento químico em escala real

6. AGRADECIMENTOS

Agradeço à constante colaboração de todos os profissionais envolvidos no projeto, em especial, à Eliane Magalhães Pereira Silva e Carlos Antônio de Morais

Agradeço à bolsa de iniciação científica cedida pela Fundação de Amparo à Pesquisa de Minas Gerais – FAPEMIG, sem a qual o projeto desenvolvido durante o estágio não seria possível.

7. REFERÊNCIAS BIBLIOGRÁFICAS

- [1] SILVA, E. M. P. e Silva, Fábio. Relatório das atividades do projeto "gerência de rejeitos radioativos no CDTN"- período janeiro/98 a dezembro/99. Belo Horizonte: CDTN, 1999. (Nota interna NI(CT3)-008/99)
- [2] INTERNATIONAL ATOMIC ENERGY AGENCY. Chemical treatment of radioactive wastes. Vienna: 1968. (IAEA TRS 89)
- [3] INTERNATIONAL ATOMIC ENERGY AGENCY. Handling and treatment of radioactive aqueous wastes. Vienna: 1992. (IAEA TECDOC 654)
- [4] MORAIS, C. A. Desenvolvimento de metodologia para o tratamento de rejeitos radioativos do CDTN – Rejeitos Líquidos Aquosos de Baixo Nível de Radiação. In: CONGRESSO GERAL DE ENERGIA NUCLEAR, 6, 1996, Rio de Janeiro. Anais Rio de Janeiro: ABEN, 1996. 1 CD-ROM.
- [5] FONSECA, T. P. B. **Relatório final de estágio**. Belo Horizonte: CDTN, 2001 (Nota interna NI (CT3)-005/01)
- [6] COMISSÃO NACIONAL DE ENERGIA NUCLEAR. CNEN-N.E. 6.05. Gerência de rejeitos radioativos em instalações radiativas. Rio de Janeiro: 1985.
- [7] MORAIS, C. A. Amostragem e caracterização de rejeito líquido para ensaios de laboratório. Belo Horizonte: CDTN, 1995. (Rotina técnica RT(CT3)CDTN-0239)